Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Glob Chang Biol ; 30(1): e17098, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273507

RESUMEN

Quantifying carbon fluxes into and out of coastal soils is critical to meeting greenhouse gas reduction and coastal resiliency goals. Numerous 'blue carbon' studies have generated, or benefitted from, synthetic datasets. However, the community those efforts inspired does not have a centralized, standardized database of disaggregated data used to estimate carbon stocks and fluxes. In this paper, we describe a data structure designed to standardize data reporting, maximize reuse, and maintain a chain of credit from synthesis to original source. We introduce version 1.0.0. of the Coastal Carbon Library, a global database of 6723 soil profiles representing blue carbon-storing systems including marshes, mangroves, tidal freshwater forests, and seagrasses. We also present the Coastal Carbon Atlas, an R-shiny application that can be used to visualize, query, and download portions of the Coastal Carbon Library. The majority (4815) of entries in the database can be used for carbon stock assessments without the need for interpolating missing soil variables, 533 are available for estimating carbon burial rate, and 326 are useful for fitting dynamic soil formation models. Organic matter density significantly varied by habitat with tidal freshwater forests having the highest density, and seagrasses having the lowest. Future work could involve expansion of the synthesis to include more deep stock assessments, increasing the representation of data outside of the U.S., and increasing the amount of data available for mangroves and seagrasses, especially carbon burial rate data. We present proposed best practices for blue carbon data including an emphasis on disaggregation, data publication, dataset documentation, and use of standardized vocabulary and templates whenever appropriate. To conclude, the Coastal Carbon Library and Atlas serve as a general example of a grassroots F.A.I.R. (Findable, Accessible, Interoperable, and Reusable) data effort demonstrating how data producers can coordinate to develop tools relevant to policy and decision-making.


Asunto(s)
Carbono , Suelo , Carbono/química , Suelo/química , Ecosistema , Humedales , Políticas
3.
Nat Commun ; 15(1): 547, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263156

RESUMEN

Natural climate solutions can mitigate climate change in the near-term, during a climate-critical window. Yet, persistent misunderstandings about what constitutes a natural climate solution generate unnecessary confusion and controversy, thereby delaying critical mitigation action. Based on a review of scientific literature and best practices, we distill five foundational principles of natural climate solutions (nature-based, sustainable, climate-additional, measurable, and equitable) and fifteen operational principles for practical implementation. By adhering to these principles, practitioners can activate effective and durable natural climate solutions, enabling the rapid and wide-scale adoption necessary to meaningfully contribute to climate change mitigation.

4.
Sci Total Environ ; 915: 169681, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38163591

RESUMEN

Blue carbon habitats, including salt marshes, can sequester carbon at rates that are an order of magnitude greater than terrestrial forests. This ecosystem service may be under threat from nitrate (NO3-) enrichment, which can shift the microbial community and stimulate decomposition of organic matter. Despite efforts to mitigate nitrogen loading, salt marshes continue to experience chronic NO3- enrichment, however, the long-term consequence of this enrichment on carbon storage remains unclear. To investigate the effect of chronic NO3- exposure on salt marsh organic matter decomposition, we collected sediments from three sites across a range of prior NO3- exposure: a relatively pristine marsh, a marsh enriched to ~70 µmol L-1 NO3- in the flooding seawater for 13 years, and a marsh enriched between 100 and 1000 µmol L-1 for 40 years from wastewater treatment effluent. We collected sediments from 20 to 25 cm depth and determined that sediments from the most chronically enriched site had less bioavailable organic matter and a distinct assemblage of active microbial taxa compared to the other two sites. We also performed a controlled anaerobic decomposition experiment to test whether the legacy of NO3- exposure influenced the functional response to additional NO3-. We found significant changes to microbial community composition resulting from experimental NO3- addition. Experimental NO3- addition also increased microbial respiration in sediments collected from all sites. However, sediments from the most chronically enriched site exhibited the smallest increase, the lowest rates of total NO3- reduction by dissimilatory nitrate reduction to ammonium (DNRA), and the highest DNF:DNRA ratios. Our results suggest that chronic exposure to elevated NO3- may lead to residual pools of organic matter that are less biologically available for decomposition. Thus, it is important to consider the legacy of nutrient exposure when examining the carbon cycle of salt marsh sediments.


Asunto(s)
Compuestos de Amonio , Microbiota , Nitratos/metabolismo , Humedales , Nitrógeno/metabolismo , Desnitrificación , Compuestos Orgánicos , Compuestos de Amonio/metabolismo , Carbono/metabolismo
5.
Philos Trans A Math Phys Eng Sci ; 381(2261): 20230081, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37807687

RESUMEN

Radiocarbon (14C) is a critical tool for understanding the global carbon cycle. During the Anthropocene, two new processes influenced 14C in atmospheric, land and ocean carbon reservoirs. First, 14C-free carbon derived from fossil fuel burning has diluted 14C, at rates that have accelerated with time. Second, 'bomb' 14C produced by atmospheric nuclear weapon tests in the mid-twentieth century provided a global isotope tracer that is used to constrain rates of air-sea gas exchange, carbon turnover, large-scale atmospheric and ocean transport, and other key C cycle processes. As we write, the 14C/12C ratio of atmospheric CO2 is dropping below pre-industrial levels, and the rate of decline in the future will depend on global fossil fuel use and net exchange of bomb 14C between the atmosphere, ocean and land. This milestone coincides with a rapid increase in 14C measurement capacity worldwide. Leveraging future 14C measurements to understand processes and test models requires coordinated international effort-a 'decade of radiocarbon' with multiple goals: (i) filling observational gaps using archives, (ii) building and sustaining observation networks to increase measurement density across carbon reservoirs, (iii) developing databases, synthesis and modelling tools and (iv) establishing metrics for identifying and verifying changes in carbon sources and sinks. This article is part of the Theo Murphy meeting issue 'Radiocarbon in the Anthropocene'.

6.
Sci Rep ; 12(1): 22438, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36575205

RESUMEN

Ecological theory predicts a pulse disturbance results in loss of soil organic carbon and short-term respiration losses that exceed recovery of productivity in many ecosystems. However, fundamental uncertainties remain in our understanding of ecosystem recovery where spatiotemporal variation in structure and function are not adequately represented in conceptual models. Here we show that wildfire in sagebrush shrublands results in multiscale responses that vary with ecosystem properties, landscape position, and their interactions. Consistent with ecological theory, soil pH increased and soil organic carbon (SOC) decreased following fire. In contrast, SOC responses were slope aspect and shrub-microsite dependent, with a larger proportional decrease under previous shrubs on north-facing aspects compared to south-facing ones. In addition, respiratory losses from burned aspects were not significantly different than losses from unburned aspects. We also documented the novel formation of soil inorganic carbon (SIC) with wildfire that differed significantly with aspect and microsite scale. Whereas pH and SIC recovered within 37 months post-fire, SOC stocks remained reduced, especially on north-facing aspects. Spatially, SIC formation was paired with reduced respiration losses, presumably lower partial pressure of carbon dioxide (pCO2), and increased calcium availability, consistent with geochemical models of carbonate formation. Our findings highlight the formation of SIC after fire as a novel short-term sink of carbon in non-forested shrubland ecosystems. Resiliency in sagebrush shrublands may be more complex and integrated across ecosystem to landscape scales than predicted based on current theory.


Asunto(s)
Artemisia , Incendios Forestales , Ecosistema , Suelo , Carbono
7.
PeerJ ; 10: e14275, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36353602

RESUMEN

Background: High-resolution soil moisture estimates are critical for planning water management and assessing environmental quality. In-situ measurements alone are too costly to support the spatial and temporal resolutions needed for water management. Recent efforts have combined calibration data with machine learning algorithms to fill the gap where high resolution moisture estimates are lacking at the field scale. This study aimed to provide calibrated soil moisture models and methodology for generating gridded estimates of soil moisture at multiple depths, according to user-defined temporal periods, spatial resolution and extent. Methods: We applied nearly one million national library soil moisture records from over 100 sites, spanning the U.S. Midwest and West, to build Quantile Random Forest (QRF) calibration models. The QRF models were built on covariates including soil moisture estimates from North American Land Data Assimilation System (NLDAS), soil properties, climate variables, digital elevation models, and remote sensing-derived indices. We also explored an alternative approach that adopted a regionalized calibration dataset for the Western U.S. The broad-scale QRF models were independently validated according to sampling depths, land cover type, and observation period. We then explored the model performance improved with local samples used for spiking. Finally, the QRF models were applied to estimate soil moisture at the field scale where evaluation was carried out to check estimated temporal and spatial patterns. Results: The broad-scale QRF model showed moderate performance (R2 = 0.53, RMSE = 0.078 m3/m3) when data points from all depth layers (up to 100 cm) were considered for an independent validation. Elevation, NLDAS-derived moisture, soil properties, and sampling depth were ranked as the most important covariates. The best model performance was observed for forest and pasture sites (R2 > 0.5; RMSE < 0.09 m3/m3), followed by grassland and cropland (R2 > 0.4; RMSE < 0.11 m3/m3). Model performance decreased with sampling depths and was slightly lower during the winter months. Spiking the national QRF model with local samples improved model performance by reducing the RMSE to less than 0.05 m3/m3 for grassland sites. At the field scale, model estimates illustrated more accurate temporal trends for surface than subsurface soil layers. Model estimated spatial patterns need to be further improved and validated with management data. Conclusions: The model accuracy for top 0-20 cm soil depth (R2 > 0.5, RMSE < 0.08 m3/m3) showed promise for adopting the methodology for soil moisture monitoring. The success of spiking the national model with local samples showed the need to collect multi-year high frequency (e.g., hourly) sensor-based field measurements to improve estimates of soil moisture for a longer time period. Future work should improve model performance for deeper depths with additional hydraulic properties and use of locally-selected calibration datasets.


Asunto(s)
Tecnología de Sensores Remotos , Suelo , Tecnología de Sensores Remotos/métodos , Clima , Agua/análisis , Medio Oeste de Estados Unidos , Aprendizaje Automático
8.
Science ; 375(6586): 1222-1225, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35298251

RESUMEN

Regional consistency is necessary for carbon credit integrity.

9.
Glob Chang Biol ; 27(23): 6025-6058, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34636101

RESUMEN

Land-based climate mitigation measures have gained significant attention and importance in public and private sector climate policies. Building on previous studies, we refine and update the mitigation potentials for 20 land-based measures in >200 countries and five regions, comparing "bottom-up" sectoral estimates with integrated assessment models (IAMs). We also assess implementation feasibility at the country level. Cost-effective (available up to $100/tCO2 eq) land-based mitigation is 8-13.8 GtCO2 eq yr-1 between 2020 and 2050, with the bottom end of this range representing the IAM median and the upper end representing the sectoral estimate. The cost-effective sectoral estimate is about 40% of available technical potential and is in line with achieving a 1.5°C pathway in 2050. Compared to technical potentials, cost-effective estimates represent a more realistic and actionable target for policy. The cost-effective potential is approximately 50% from forests and other ecosystems, 35% from agriculture, and 15% from demand-side measures. The potential varies sixfold across the five regions assessed (0.75-4.8 GtCO2eq yr-1 ) and the top 15 countries account for about 60% of the global potential. Protection of forests and other ecosystems and demand-side measures present particularly high mitigation efficiency, high provision of co-benefits, and relatively lower costs. The feasibility assessment suggests that governance, economic investment, and socio-cultural conditions influence the likelihood that land-based mitigation potentials are realized. A substantial portion of potential (80%) is in developing countries and LDCs, where feasibility barriers are of greatest concern. Assisting countries to overcome barriers may result in significant quantities of near-term, low-cost mitigation while locally achieving important climate adaptation and development benefits. Opportunities among countries vary widely depending on types of land-based measures available, their potential co-benefits and risks, and their feasibility. Enhanced investments and country-specific plans that accommodate this complexity are urgently needed to realize the large global potential from improved land stewardship.


Asunto(s)
Cambio Climático , Ecosistema , Agricultura , Estudios de Factibilidad , Políticas
10.
Glob Chang Biol ; 27(12): 2856-2866, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33644947

RESUMEN

Mangroves have among the highest carbon densities of any tropical forest. These 'blue carbon' ecosystems can store large amounts of carbon for long periods, and their protection reduces greenhouse gas emissions and supports climate change mitigation. Incorporating mangroves into Nationally Determined Contributions to the Paris Agreement and their valuation on carbon markets requires predicting how the management of different land-uses can prevent future greenhouse gas emissions and increase CO2 sequestration. We integrated comprehensive global datasets for carbon stocks, mangrove distribution, deforestation rates, and land-use change drivers into a predictive model of mangrove carbon emissions. We project emissions and foregone soil carbon sequestration potential under 'business as usual' rates of mangrove loss. Emissions from mangrove loss could reach 2391 Tg CO2 eq by the end of the century, or 3392 Tg CO2 eq when considering foregone soil carbon sequestration. The highest emissions were predicted in southeast and south Asia (West Coral Triangle, Sunda Shelf, and the Bay of Bengal) due to conversion to aquaculture or agriculture, followed by the Caribbean (Tropical Northwest Atlantic) due to clearing and erosion, and the Andaman coast (West Myanmar) and north Brazil due to erosion. Together, these six regions accounted for 90% of the total potential CO2 eq future emissions. Mangrove loss has been slowing, and global emissions could be more than halved if reduced loss rates remain in the future. Notably, the location of global emission hotspots was consistent with every dataset used to calculate deforestation rates or with alternative assumptions about carbon storage and emissions. Our results indicate the regions in need of policy actions to address emissions arising from mangrove loss and the drivers that could be managed to prevent them.


Asunto(s)
Carbono , Humedales , Asia , Brasil , Secuestro de Carbono , Región del Caribe , Ecosistema , Paris
11.
Glob Chang Biol ; 27(2): 215-217, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33098149

RESUMEN

To limit global temperature rise, scientists have proposed significant potentials for climate change mitigation from protecting and managing natural systems. However, depending on the time taken for technology deployment and natural carbon gain, actual mitigation can be dramatically delayed, and total mitigation by 2030 or 2050 can be more than halved compared to the estimated potential. Delayed or lack of action on implementation would push back the timeline to reduce greenhouse gas emissions, largely undermining the Paris goals. Launching actions now and learning from past experience can help deliver climate mitigation and sustainable development goals.


Asunto(s)
Cambio Climático , Gases de Efecto Invernadero , Paris
12.
Sensors (Basel) ; 20(23)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33255566

RESUMEN

Recent developments in diffuse reflectance soil spectroscopy have increasingly focused on building and using large soil spectral libraries with the purpose of supporting many activities relevant to monitoring, mapping and managing soil resources. A potential limitation of using a mid-infrared (MIR) spectral library developed by another laboratory is the need to account for inherent differences in the signal strength at each wavelength associated with different instrumental and environmental conditions. Here we apply predictive models built using the USDA National Soil Survey Center-Kellogg Soil Survey Laboratory (NSSC-KSSL) MIR spectral library (n = 56,155) to samples sets of European and US origin scanned on a secondary spectrometer to assess the need for calibration transfer using a piecewise direct standardization (PDS) approach in transforming spectra before predicting carbon cycle relevant soil properties (bulk density, CaCO3, organic carbon, clay and pH). The European soil samples were from the land use/cover area frame statistical survey (LUCAS) database available through the European Soil Data Center (ESDAC), while the US soil samples were from the National Ecological Observatory Network (NEON). Additionally, the performance of the predictive models on PDS transfer spectra was tested against the direct calibration models built using samples scanned on the secondary spectrometer. On independent test sets of European and US origin, PDS improved predictions for most but not all soil properties with memory based learning (MBL) models generally outperforming partial least squares regression and Cubist models. Our study suggests that while good-to-excellent results can be obtained without calibration transfer, for most of the cases presented in this study, PDS was necessary for unbiased predictions. The MBL models also outperformed the direct calibration models for most of the soil properties. For laboratories building new spectroscopy capacity utilizing existing spectral libraries, it appears necessary to develop calibration transfer using PDS or other calibration transfer techniques to obtain the least biased and most precise predictions of different soil properties.

13.
Nat Commun ; 10(1): 4313, 2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31575872

RESUMEN

Policies aiming to preserve vegetated coastal ecosystems (VCE; tidal marshes, mangroves and seagrasses) to mitigate greenhouse gas emissions require national assessments of blue carbon resources. Here, we present organic carbon (C) storage in VCE across Australian climate regions and estimate potential annual CO2 emission benefits of VCE conservation and restoration. Australia contributes 5-11% of the C stored in VCE globally (70-185 Tg C in aboveground biomass, and 1,055-1,540 Tg C in the upper 1 m of soils). Potential CO2 emissions from current VCE losses are estimated at 2.1-3.1 Tg CO2-e yr-1, increasing annual CO2 emissions from land use change in Australia by 12-21%. This assessment, the most comprehensive for any nation to-date, demonstrates the potential of conservation and restoration of VCE to underpin national policy development for reducing greenhouse gas emissions.


Asunto(s)
Carbono/análisis , Cambio Climático , Conservación de los Recursos Naturales , Humedales , Australia , Ecosistema
14.
Glob Chang Biol ; 25(10): 3224-3241, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31317634

RESUMEN

Salt marshes sequester carbon at rates more than an order of magnitude greater than their terrestrial counterparts, helping to mitigate climate change. As nitrogen loading to coastal waters continues, primarily in the form of nitrate, it is unclear what effect it will have on carbon storage capacity of these highly productive systems. This uncertainty is largely driven by the dual role nitrate can play in biological processes, where it can serve as a nutrient-stimulating primary production or a thermodynamically favorable electron acceptor fueling heterotrophic metabolism. Here, we used a controlled flow-through reactor experiment to test the role of nitrate as an electron acceptor, and its effect on organic matter decomposition and the associated microbial community in salt marsh sediments. Organic matter decomposition significantly increased in response to nitrate, even at sediment depths typically considered resistant to decomposition. The use of isotope tracers suggests that this pattern was largely driven by stimulated denitrification. Nitrate addition also significantly altered the microbial community and decreased alpha diversity, selecting for taxa belonging to groups known to reduce nitrate and oxidize more complex forms of organic matter. Fourier Transform-Infrared Spectroscopy further supported these results, suggesting that nitrate facilitated decomposition of complex organic matter compounds into more bioavailable forms. Taken together, these results suggest the existence of organic matter pools that only become accessible with nitrate and would otherwise remain stabilized in the sediment. The existence of such pools could have important implications for carbon storage, since greater decomposition rates as N loading increases may result in less overall burial of organic-rich sediment. Given the extent of nitrogen loading along our coastlines, it is imperative that we better understand the resilience of salt marsh systems to nutrient enrichment, especially if we hope to rely on salt marshes, and other blue carbon systems, for long-term carbon storage.


Asunto(s)
Nitratos , Humedales , Carbono , Desnitrificación , Nitrógeno
15.
Glob Chang Biol ; 25(1): 12-24, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30338884

RESUMEN

To predict the behavior of the terrestrial carbon cycle, it is critical to understand the source, formation pathway, and chemical composition of soil organic matter (SOM). There is emerging consensus that slow-cycling SOM generally consists of relatively low molecular weight organic carbon substrates that enter the mineral soil as dissolved organic matter and associate with mineral surfaces (referred to as "mineral-associated OM," or MAOM). However, much debate and contradictory evidence persist around: (a) whether the organic C substrates within the MAOM pool primarily originate from aboveground vs. belowground plant sources and (b) whether C substrates directly sorb to mineral surfaces or undergo microbial transformation prior to their incorporation into MAOM. Here, we attempt to reconcile disparate views on the formation of MAOM by proposing a spatially explicit set of processes that link plant C source with MAOM formation pathway. Specifically, because belowground vs. aboveground sources of plant C enter spatially distinct regions of the mineral soil, we propose that fine-scale differences in microbial abundance should determine the probability of substrate-microbe vs. substrate-mineral interaction. Thus, formation of MAOM in areas of high microbial density (e.g., the rhizosphere and other microbial hotspots) should primarily occur through an in vivo microbial turnover pathway and favor C substrates that are first biosynthesized with high microbial carbon-use efficiency prior to incorporation in the MAOM pool. In contrast, in areas of low microbial density (e.g., certain regions of the bulk soil), MAOM formation should primarily occur through the direct sorption of intact or partially oxidized plant compounds to uncolonized mineral surfaces, minimizing the importance of carbon-use efficiency, and favoring C substrates with strong "sorptive affinity." Through this framework, we thus describe how the primacy of biotic vs. abiotic controls on MAOM dynamics is not mutually exclusive, but rather spatially dictated. Such an understanding may be integral to more accurately modeling soil organic matter dynamics across different spatial scales.


Asunto(s)
Carbono , Minerales/química , Compuestos Orgánicos , Plantas/metabolismo , Suelo/química , Adsorción , Biodegradación Ambiental , Carbono/química , Carbono/metabolismo , Ciclo del Carbono , Compuestos Orgánicos/química , Compuestos Orgánicos/metabolismo , Microbiología del Suelo
16.
Sci Adv ; 4(11): eaat1869, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30443593

RESUMEN

Limiting climate warming to <2°C requires increased mitigation efforts, including land stewardship, whose potential in the United States is poorly understood. We quantified the potential of natural climate solutions (NCS)-21 conservation, restoration, and improved land management interventions on natural and agricultural lands-to increase carbon storage and avoid greenhouse gas emissions in the United States. We found a maximum potential of 1.2 (0.9 to 1.6) Pg CO2e year-1, the equivalent of 21% of current net annual emissions of the United States. At current carbon market prices (USD 10 per Mg CO2e), 299 Tg CO2e year-1 could be achieved. NCS would also provide air and water filtration, flood control, soil health, wildlife habitat, and climate resilience benefits.

17.
PeerJ ; 6: e5457, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30155360

RESUMEN

Potential natural vegetation (PNV) is the vegetation cover in equilibrium with climate, that would exist at a given location if not impacted by human activities. PNV is useful for raising public awareness about land degradation and for estimating land potential. This paper presents results of assessing machine learning algorithms-neural networks (nnet package), random forest (ranger), gradient boosting (gbm), K-nearest neighborhood (class) and Cubist-for operational mapping of PNV. Three case studies were considered: (1) global distribution of biomes based on the BIOME 6000 data set (8,057 modern pollen-based site reconstructions), (2) distribution of forest tree taxa in Europe based on detailed occurrence records (1,546,435 ground observations), and (3) global monthly fraction of absorbed photosynthetically active radiation (FAPAR) values (30,301 randomly-sampled points). A stack of 160 global maps representing biophysical conditions over land, including atmospheric, climatic, relief, and lithologic variables, were used as explanatory variables. The overall results indicate that random forest gives the overall best performance. The highest accuracy for predicting BIOME 6000 classes (20) was estimated to be between 33% (with spatial cross-validation) and 68% (simple random sub-setting), with the most important predictors being total annual precipitation, monthly temperatures, and bioclimatic layers. Predicting forest tree species (73) resulted in mapping accuracy of 25%, with the most important predictors being monthly cloud fraction, mean annual and monthly temperatures, and elevation. Regression models for FAPAR (monthly images) gave an R-square of 90% with the most important predictors being total annual precipitation, monthly cloud fraction, CHELSA bioclimatic layers, and month of the year, respectively. Further developments of PNV mapping could include using all GBIF records to map the global distribution of plant species at different taxonomic levels. This methodology could also be extended to dynamic modeling of PNV, so that future climate scenarios can be incorporated. Global maps of biomes, FAPAR and tree species at one km spatial resolution are available for download via http://dx.doi.org/10.7910/DVN/QQHCIK.

18.
Ecology ; 99(10): 2284-2294, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29981157

RESUMEN

Decomposition of plant litter is a key control over carbon (C) storage in the soil. The biochemistry of the litter being produced, the environment in which the decomposition is taking place, and the community composition and metabolism of the decomposer organisms exert a combined influence over decomposition rates. As deciduous shrubs and trees are expanding into tundra ecosystems as a result of regional climate warming, this change in vegetation represents a change in litter input to tundra soils and a change in the environment in which litter decomposes. To test the importance of litter biochemistry and environment in determining litter mass loss, we reciprocally transplanted litter between heath (Empetrum nigrum), shrub (Betula nana), and forest (Betula pubescens) at a sub-Arctic treeline in Sweden. As expansion of shrubs and trees promotes deeper snow, we also used a snow fence experiment in a tundra heath environment to understand the importance of snow depth, relative to other factors, in the decomposition of litter. Our results show that B. pubescens and B. nana leaf litter decomposed at faster rates than E. nigrum litter across all environments, while all litter species decomposed at faster rates in the forest and shrub environments than in the tundra heath. The effect of increased snow on decomposition was minimal, leading us to conclude that microbial activity over summer in the productive forest and shrub vegetation is driving increased mass loss compared to the heath. Using B. pubescens and E. nigrum litter, we demonstrate that degradation of carbohydrate-C is a significant driver of mass loss in the forest. This pathway was less prominent in the heath, which is consistent with observations that tundra soils typically have high concentrations of "labile" C. This experiment suggests that further expansion of shrubs and trees may stimulate the loss of undecomposed carbohydrate C in the tundra.


Asunto(s)
Ecosistema , Tundra , Regiones Árticas , Suelo/química , Suecia
19.
Sci Adv ; 4(3): e1701482, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29546234

RESUMEN

Delgado-Baquerizo et al. (Science Advances, 12 April 2017, e1602008) use statistical correlations to infer that paleoclimate (6000 to 22,000 years ago) is a more important driver of current soil organic carbon stocks than the current-day climate. On the other hand, a wealth of radiocarbon measurements indicates that the organic carbon in most topsoils is only a few decades to perhaps a few centuries old. These seemingly incongruous results can perhaps be reconciled by considering that the long-term pedogenic development of a soil strongly influences the physiochemical properties, which lead to stabilization of new carbon entering that soil regardless of current climate.

20.
Proc Natl Acad Sci U S A ; 114(44): 11645-11650, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29078344

RESUMEN

Better stewardship of land is needed to achieve the Paris Climate Agreement goal of holding warming to below 2 °C; however, confusion persists about the specific set of land stewardship options available and their mitigation potential. To address this, we identify and quantify "natural climate solutions" (NCS): 20 conservation, restoration, and improved land management actions that increase carbon storage and/or avoid greenhouse gas emissions across global forests, wetlands, grasslands, and agricultural lands. We find that the maximum potential of NCS-when constrained by food security, fiber security, and biodiversity conservation-is 23.8 petagrams of CO2 equivalent (PgCO2e) y-1 (95% CI 20.3-37.4). This is ≥30% higher than prior estimates, which did not include the full range of options and safeguards considered here. About half of this maximum (11.3 PgCO2e y-1) represents cost-effective climate mitigation, assuming the social cost of CO2 pollution is ≥100 USD MgCO2e-1 by 2030. Natural climate solutions can provide 37% of cost-effective CO2 mitigation needed through 2030 for a >66% chance of holding warming to below 2 °C. One-third of this cost-effective NCS mitigation can be delivered at or below 10 USD MgCO2-1 Most NCS actions-if effectively implemented-also offer water filtration, flood buffering, soil health, biodiversity habitat, and enhanced climate resilience. Work remains to better constrain uncertainty of NCS mitigation estimates. Nevertheless, existing knowledge reported here provides a robust basis for immediate global action to improve ecosystem stewardship as a major solution to climate change.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...